ANALYSIS OF THE HYPERBOLIC PROCESS OF HEAT
CONDUCTION FOR A HOLLOW CYLINDER HEATED
BY A MOVING SOURCE

L. A, Brichkin, Yu. V. Darinskii, UDC 536.21
and L. M. Pustyl'nikov :

The hyperbolic equation of heat conduction is solved for a hollow cylinder heated by a
movable source. A number of characteristics resulting from the hyperbolic nature of
the process of heat transfer are critically analyzed,

The problem of determining the temperature field of a hollow finite cooled cylinder, which is heated
by a source moving according to an arbitrary law, has been investigated in [1]. However, the description
based on the parabolic equation may be inadequate if the rate of displacement of the sources and also the
rates of change of other thermophysical quantities become comparable with the square of the velocity of
heat propagation

w? = o ()
which may occur, for example, during the displacement of an electrical arc in the operating chamber of
a plasmatron [2, 3].

We consider a problem analogous to [1] but take info consideration the hyperbolic nature of the rapid
thermal process.

Eliminating the vector q from the basic law of heat conduction [4], written in the form
. - dg
=z —jgradT —1 ——, 2)
q ~g 4t
where d/dt is the total time derivative, and the heat balance equation
T
W—cp S = div 3
T T ®

for v = const we obtain the following equation for heat conduction:

: 7
_l _d_T_ -+ .i -dT 2 AT __L W TT dw ’ @
w? dr? a dt A 7. dt
where the operator &?/dt? is given by
d? 02 v 9 ‘
= -2 {vgrad | —- -i- (v grad) (v grad).
e o (VE’ ) o v erad) (verad 5)

Thus the heat balance is affected by not only the intensity of the source but also by the total change
of this intensity in time:
W _ W (v grad ). (6)
dt ot
If this quantity is large, the last term in Eq. (4) cannot be discarded.
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In accordance with the above discussion the hyperbolic generalization of the problem of 1] is wriften
(for v= 0) in the following form:
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8, @ 1, 0) =1, - 8)
‘30, 9, m 0)
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3Fo . ©)
(92 — Bi, 9) -0, (10)
ap p=l1
o ) 1
— +— Bi, 0 = — Bi, (11)
\ ap pO : )f’=pn (1] ?
0(p, ¢, n, Fo)=90(p, ¢+ 2n, n, Fo), (12)
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011 1]=0 ( af] /=% ’ ( )

where Pe; = wR,/a is the dimensjonless velocity of propagation of thermal perturbation.
The choice of the function f(p, ¢, 1, Fo) is governed by the trajectory, rate, and the space—time dis-
tribution of the heat flux, For example, if
f(o, @, m, Fo) =8 —1) ¥ u,(Fo) (n-—m), (14)
I=1

where {n;} is an arbitrary sequence of values of the axial coordinate n (0 < n; < 7, I =1,n)and uz(Fo)
is some finite function with support [Fo;, Fo; +¢), then (14) describes a thin high-intensity ring source of
variable intensity oriented toward the inner surface and moving along the axis of the cylinder in steps,

If

(n— Pe Fo)’] ( p—Pe,Fo g
> A = , — (15)
202 2:[ . 2ﬂ ) a(p po)v

1
, N, FO) = ——57—exp | —
f(e, @, n, Fo) P p [
where 4 is Jacobi's theta function, o? is the variance, and (PeyFo, PeywFo) is the movable center of the
distribution, then we obtain a description of the source with normal distribution of the heat flux density
describing a spiral line along the outer surface of the cylinder and terminating its existence at the instant
Fo = 27 /Pey and so forth,

We shall seek the solution of Eq. (7) with conditions (8)~(13) by the method of finite integral trans-
forms. The triple transform [5] )

- B0 T '

G, m g Foy=| | § exp (img) pV,n, (uP) cos gnd (0, ¢, W, Fo) dedpdn (16)
o1 @
satisfies the following Cauchy problem:
Lo d8 e kenegd) B2 20 Bi Vo (09, Sembog — P 'T-E-—L—df—) 7
—l—)g' TFor ¥ dFo =—(n*rk ngH) 0 - 2a* by, o (190y) Semboq 0 t, " Pl GFo s
= 252 . 2 .1,
O, m, g, O)=: 2ﬂ2 [B"zvo ) - — B]lj Benugs (18)
i n
8, m q. 0 g (19)
dFo

where ik is the Kronecker symbolandf = 1@, m,q, |Fo)is the transform of the function f(p, ¢, n, Fo) of
type (16).
The generalization for the triple transform (16) has the form 51

8(p, ¢, m, Fo) = % E 2 2 W24V, (o) exp (— ime) cosqnd (t, m, ¢, Fo), (20)
Me=—

b=

where {,42} are the eigenvalues of the corresponding Sturm —Liouville operator, a part of which is given
in f1], and {Vy, (up)} are the eigenfunctions which are simultaneously the kernel of the Hankel part of

transform (16). The quantity Aym is given by
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form:

2 2 . . -1
Ay = [% (205 - Bi§ — m?) Vi (up,) — (u? -+ Bij — mz)] .

The expression for Vm(up) and also some asymptotic forms are given in [1].

The solution of problem (17)-(19), obtained with the use of Laplace transforms, has the following

Fo

- Po ¢ .2
3 m, g, Fo = = S {(l-rT;{) exp[ztho—A>]~(1+ pez)
0

, 1 -
X exp [zl(Fo—M]j Fa, m, g, ) dh = AP [Pof(p, m, g, 0)
T

4n Bi, . 1 £
— " 2,6,,8, ] exp (z, Fo) — —mi_ [Pof(p, m, g, 0)
4r Bi ) a?Bi
- ﬂpgl, zlaom‘soq] exp (2, Fo) - 2n Bl;:/ o (100) Bomboq:

where z; and z, are the roots of the equation

and

! 2, (y? o pin2a?
—pz—z'—zu(}* -~ k*g?) =0

/ 4 2 il b2
%ﬁvl—p;m.*nm

(21)

(22)

(23)

(24)

Substituting (22) into (20) we obtain the solution of problem (7)-(13) for an arbitrary source f = f(p, ¢, 7,

Fo):
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sh AO‘Per 7} fiw, m, g, Fo—2)dh.

Y

where A(') is equal to 4; for q = 0 and the symbol Z denotes triple summation of type (20).

mn,g

Since for all finite values of y and g and sufficiently large Per

for Per — « from (25) we get

AP P L
e gt — o ) — g (T
8(p, 9, . FO) = — — coaBi, ¥ AV
L=l g
Bi,  Bi, ° "

Fo

(25)

(26)

% exp (— p?Fo) — _.4_ L w2A, Y, (10) exp (— int@) cos g Yexp [— (2 - k2g?) A Fu, m, g Fo—iydr, (27)

m.u.q

which coincides with the solution of the corresponding hyperbolic problem [1, 5].
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If the source is absent, i.e., f(p, ¢, n, Fo) =0, then only the "background" component
. 1 :

— +1Inp , o
8o (0, FO) = ~— Biy T + nuBi, exp (___lie_i_ Fo)'
—— 4+ —— +Inp, 2
Bi, ' Bi |
, APe _ 1 ‘ pe?
X 2 AMV‘_, {up) [ch °2 T_Fo+ e sh ___.___A"Qef Fo] . (28)

2
remains in (25),
Since the sequence {M%} increases without limit, for any finite Pe; there is a number n = N, start-
ing from which : : '
4
Pe2

Accordingly, startingfromthis term the hyperbolic sine and cosine go over into circular, Hence
the first (N—1) terms of series (28) describe the aperiodic contribution to the heat transfer process and
the remaining terms describe the periodic contribution. The first eigenfrequency of the thermal oscilla~-

tions in a hollow cylinder is , ‘
Pe? ; i
0y= —————-2’ l/-—pez wa, —1. (30)
. .

If Pes >>1, then N >» 1, In this case from the asymptotic representation [6]

1— pE<0 (n>N). (29)

2
2 (_p{[—’il); > 1) 31)
—

-

we get
(32)

Nz H=l p

o2n T

For example, for steel [7] w ~ 1800 m/sec; hence Pe . ~ 10°-107 and even for relatively thin walls
(g ~ 1.05) we have N ~ 10*-10°. ‘But, since for large n [4] Ay ,V, (up) ~ 1/ (py—1)i2,, the thermal wave
appearing in the walls of a hollow steel cylinder and thatcorresponding to the first eigenfrequency goes
into solution (28) with an initial amplitude of the order of 1072,

Thus, if Per > 1, the "background" component (28) may be replaced by the corresponding part
from (27) with an accuracy adequate for engineering practice,

Let us consider the complete solution (25).

If Po « Pel., the second term in (25) can be discarded. However, if Po ~ Pe% and f(u, m, q, 0) =0,
then this series must be retained, i.e., under the influence of strong high-intensity sources the hyperbolic
nature of heat conduction begins to show up.

Let the source be displaced. As an example we consider a thin high-intensity source placed at the
inner wall oriented along the generatrix and rotating with angular speed Pe,:

. Fo. ¢, m, Fo) =8(p—1) 8, (¢ — Pe, Fo), , 33)
where the last delta function is periodic with period [0, 27]. '

Then [5]
F, m, g, Fo) =2exp(im Pe, Fo) &, 34
from which we get
TR B T PR Bzm_) 0 G (35)
F+ 'W?;_ 3Fa =2 (1 4 im Pe? exp (im Pe, Fo) 84

Thus the last term in Egs. (4) and (7) can be discarded for small angular speeds Pe,, <« Pe%. How-
ever, if Pey ~ Pe’., then as seen from (35), the presence of the term 1/ Pe’ 5f/ 5Fo in the equation of
heat conduction has a significant effect on the form of the solution and for Pe , > Pe% it even begins to
dominate the confribution due to f.



Substituting (34) into (25) we obtain the solution for source (33):

~ ' 2
8(p. @, m, Fo) =8y (p, Fo) + po,, exp (__ Pe; Fo)
Pe;; 2

s

' N A el p
X 2 B2 AV (00) €% (— img) —— gp 0 PE Fo 0
™ Ao 2 2

2
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X WAV (1) €Xp (— img) o |exe - A
. . \
. 0

2

Ag Pe?
2

Ag Pél
2

X {Sh A -~ Agch ;\J exp [im Pe,, (Fo—1)] di. (36)

According to the Riemann—Lebesgue theorem [8] for Pe(, — = the lastintegral vanishes for all m ex~
ceptm = 0, As easily seen, the solution thus obtained coincides with the solution of the analogous problem
for f(p, ¢, 7, Fo) = (1/27)6(p—1)., Hence an infinitely rapid rotation of the source is equivalent to an uni-
formly distributed intensity Po /2.

For Pe,, # « the integral in (36) is equal to

1— Ag
2

14 Ag
)

exp (im Pe, Fo) — exp [— PelFo ] exp (im Pe Fo) — exp{— PelFo ]

14 Ag ’ 14 - @7
2 1— A 2 1-- Ao .

2 2
Investigating the behavior of the modulus of this expression we find that for angular speeds satisfying

the relation

2 . .
Pe; -I- im Pe,, Pel -+ imPe,

P S TE
oz ‘/ ‘p_e;l—— p‘J-V—He —2 (”l :lv 2a ey k :07 ]7 27 . ‘)’ (38)

mPe, = + -
Z
the amplitude of the thermal oscillations acquires maxima, i,e., phenomena similar to resonance occur.
The values given by (38) somewhat differ on the decreasing side from the corresponding frequencies of
eigenoscillations (for example, atk = 0 from (30)), which is usual for oscillations in 2 medium with drag
[9]. The ordinary parabolic mechanism of heat conduction obviously plays the role of such drag.

In conclusion we note another characteristic which follows from the basic law of heat conduction (2)
and is of interest in the investigation of temperature fields appearing in the presence of rotating sources.
Taking the curl of Eq. (2) and remembering that

curlgrad T =0,
we obtain the equation for the vortex of the heat flux
| ML B (39)
dt

which shows that for 7 = 0 in generalcurlq = 0 also.

Therefore the vector field q ceases to be a poential field, as it would follow from Fourier's law
in the classical case, and the possibility of formation of thermal vortices appears. From Stokes theorem
{10]

g dl == curl g ds (4.0)

S

g 17
‘ ‘;V A

L
the circulation of the vector (1/A) ¢ along an arbitrary closed contour L is nonzero; hence an integral of type
(40) (along a not necessarily closed trajectory) can no longer be interpreted as the total change of tem-
perature in going from one isothermal surface o another,

Eliminating scalar T from system (2)-(3) we obtain the equation for the heat flux:
1 d*q , 1 dg ’

w  dff e dt

If T — 0, then w2 — «, curl curlq = 0,andEq.(41) goes over into the classical equation.

= Aq+curl curl q— gradW. (41)
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8= (Tc—-T)/(Tc—T;

Po = R{Wy/ A(Tc—Ty)

p=1x/Ry;
n=m(z/21)
By = ayRy/ 23
Bly = apRy/ A3
Fo = at/R{;
@1, By, a3, Ry
C, Py A,a, v, t
w
Pe, =Rjw/a
Te, Ty
k=R, /21
po = Ra/Ry;
A
5(z)

1,

2.

3.

4,

5.

6.

(1970).

7. A

8. G

9. K

10, V

11, L
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NOTATION

are the dimensionless temperature, and coordinates;

are the Biot, Fourier, and Pomerantsev numbers respectively;

are the internal and external thermal conductivity coefficients and radii of the
cylinder;

are the specific heat, density, thermal conductivity, thermal diffusivity, rate
of convective transfer, and relaxation time;

is the distributed source intensity;

is the dimensionless angular speed;

are the temperatures of the surrounding media;

is the ratio of the radius of the cylinder to its length;

is the Laplacian;
is the delta function,
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